Local Inverse Problems: Hölder Stability and Iterative Reconstruction

نویسندگان

  • MAARTEN V. DE HOOP
  • LINGYUN QIU
  • OTMAR SCHERZER
چکیده

We consider a class of inverse problems defined by a nonlinear map from parameter or model functions to the data. We assume that solutions exist. The space of model functions is a Banach space which is smooth and uniformly convex; however, the data space can be an arbitrary Banach space. We study sequences of parameter functions generated by a nonlinear Landweber iteration and conditions under which these strongly converge, locally, to the solutions within an appropriate distance. We express the conditions for convergence in terms of Hölder stability of the inverse maps, which ties naturally to the analysis of inverse problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Analysis of Inverse Problems: Hölder Stability and Iterative Reconstruction

We consider a class of inverse problems defined by a nonlinear mapping from parameter or model functions to the data, where the inverse mapping is Hölder continuous with respect to appropriate Banach spaces. We analyze a nonlinear Landweber iteration and prove local convergence and convergence rates with respect to an appropriate distance measure. Opposed to the standard analysis of the nonline...

متن کامل

Some Recent Developments and Open Problems in Solution Methods for Mathematical Inverse Problems

The area of mathematical inverse problems is quite broad and involves the qualitative and quantitative analysis of a wide variety of physical models. Applications include, for example, the problem of inverse heat conduction, image reconstruction, tomography, the inverse scattering problem, and the determination of unknown coefficients or boundary parameters appearing in partial differential equ...

متن کامل

Deep Convolutional Framelets: A General Deep Learning for Inverse Problems

Recently, deep learning approaches with various network architectures have achieved significant performance improvement over existing iterative reconstruction methods in various imaging problems. However, it is still unclear why these deep learning architectures work for specific inverse problems. Moreover, in contrast to the usual evolution of signal processing theory around the classical theo...

متن کامل

Inverse Boundary Value Problem for the Helmholtz Equation with Multi-frequency Data

Abstract. We study the inverse boundary value problem for the Helmholtz equation using the Dirichlet-toNeumann map at selected frequencies as the data. We develop an explicit iterative reconstruction of the wavespeed using a multi-level nonlinear projected steepest descent iterative scheme in Banach spaces. We consider wavespeeds containing conormal singularities. A conditional Lipschitz estima...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011